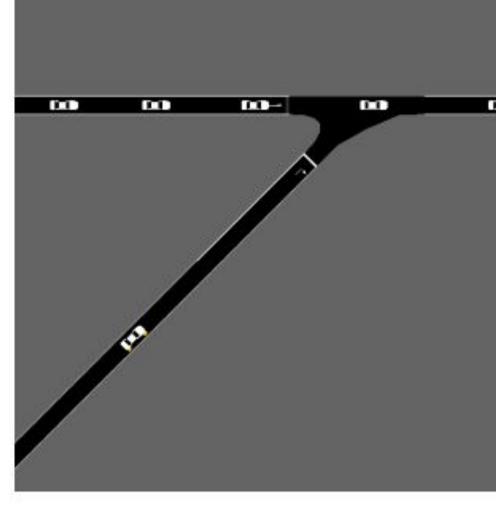


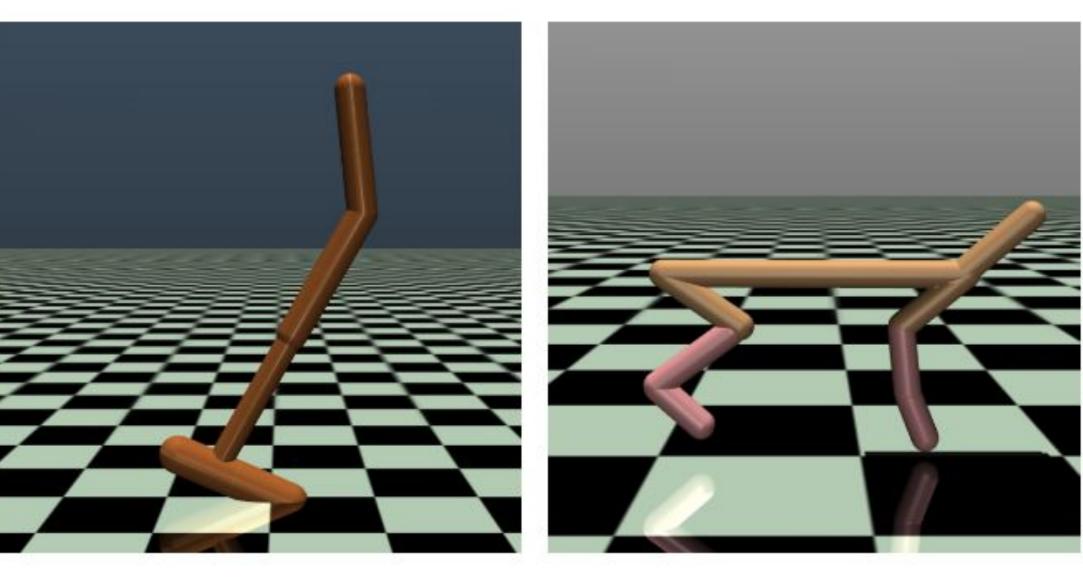
OPAL: Offline Preference-Based Apprenticeship Learning

Motivation

To enable <u>safe and efficient apprenticeship learning</u>, we propose to leverage a large offline database of transitions to perform <u>offline preference learning followed by offline RL</u>. This enables robots to learn complex skills from humans, while avoiding expensive and possibly dangerous rollouts in the environment.

Are Offline RL Benchmarks Well Suited for **Studying Offline Reward Learning?**





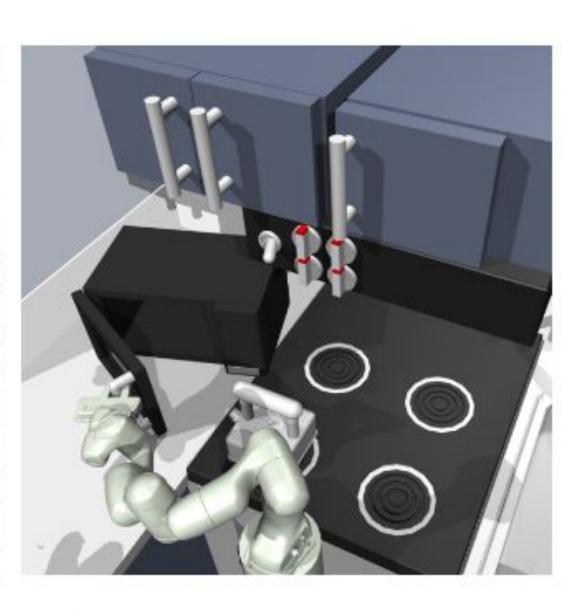
(a) U-Maze

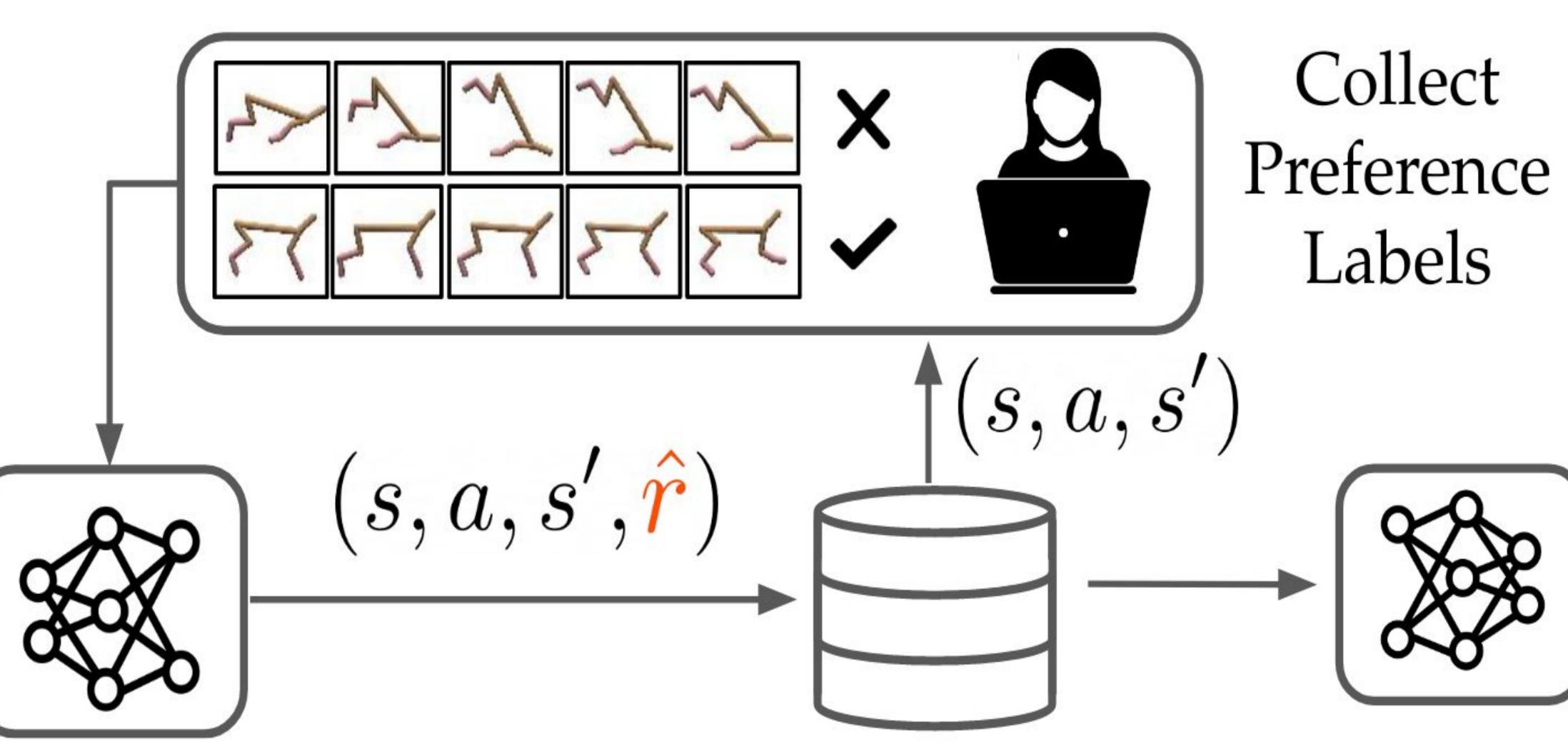
(c) Flow Merge

(b) Medium Maze (f) Franka Kitchen (d) Hopper We evaluate offline RL performance on D4RL benchmark tasks. We replace all rewards with the average over the dataset (Avg) or with zeros (Zero). Performance w.r.t. ground truth rewards significantly degrades on only a subset of the tasks (bolded). Un-bolded tasks contain little variation in the data and can be solved via direct imitation without having an informative reward function.

TASK	AWR		BCQ		BEAR		CQL	
	AVG	Zero	AVG	ZERO	AVG	Zero	AVG	ZERC
FLOW-RING-RANDOM-V1	68.3	67.5	68.9	54.7	102.2	98.5	64.7	79.2
FLOW-MERGE-RANDOM-V1	-14.7	-14.5	6.1	2	-25.3	-22.4	-8.7	-30.6
MAZE2D-UMAZE	12.8	10.0	-23.7	-14.0	-8.6	18.6	-6.4	-20.0
MAZE2D-MEDIUM	-15.9	-11.5	-23.9	-18.2	-16.7	-24.8	-11.7	-28.
HALFCHEETAH-RANDOM	6.9	6.9	8.3	8.3	8.3	8.3	0.1	3.′
HALFCHEETAH-MEDIUM-REPLAY	71.7	69.9	71.4	77.6	58.7	61.5	24.3	-3.
HALFCHEETAH-MEDIUM	73.2	71.7	89.1	89.6	89.9	87.0	92.9	91.
HALFCHEETAH-MEDIUM-EXPERT	6.4	6.1	102.2	101.1	47.5	44.6	41.6	51.
HALFCHEETAH-EXPERT	6.9	6.7	99.5	94.0	47.2	85.1	2.9	33.
HOPPER-RANDOM	11.7	1.1	17.6	19.0	20.7	7.1	51.9	-0.
HOPPER-MEDIUM-REPLAY	45.0	38.0	43.2	36.1	26.0	52.4	79.2	22.
HOPPER-MEDIUM	69.4	55.9	102.3	93.6	36.1	112.9	129.3	123.
HOPPER-MEDIUM-EXPERT	26.5	25.3	132.2	60.8	23.3	23.8	49.7	53.
HOPPER-EXPERT	28.6	19.6	139.0	134.2	72.5	95.4	42.3	99.
KITCHEN-COMPLETE	10.8	8.4	88.0	12.0	0.0	37.7	80.0	66.
KITCHEN-MIXED	20.0	32.9	85.7	28.6	117.7	128.9	63.5	111.
KITCHEN-PARTIAL	138.2	94.1	78.4	39.2	367.6	379.4	196.1	130.

Daniel Shin, Daniel S. Brown





Reward Learning

The offline dataset is used to generate preference queries and also used for offline policy optimization using the rewards learned from preferences.

Active Learning Performance

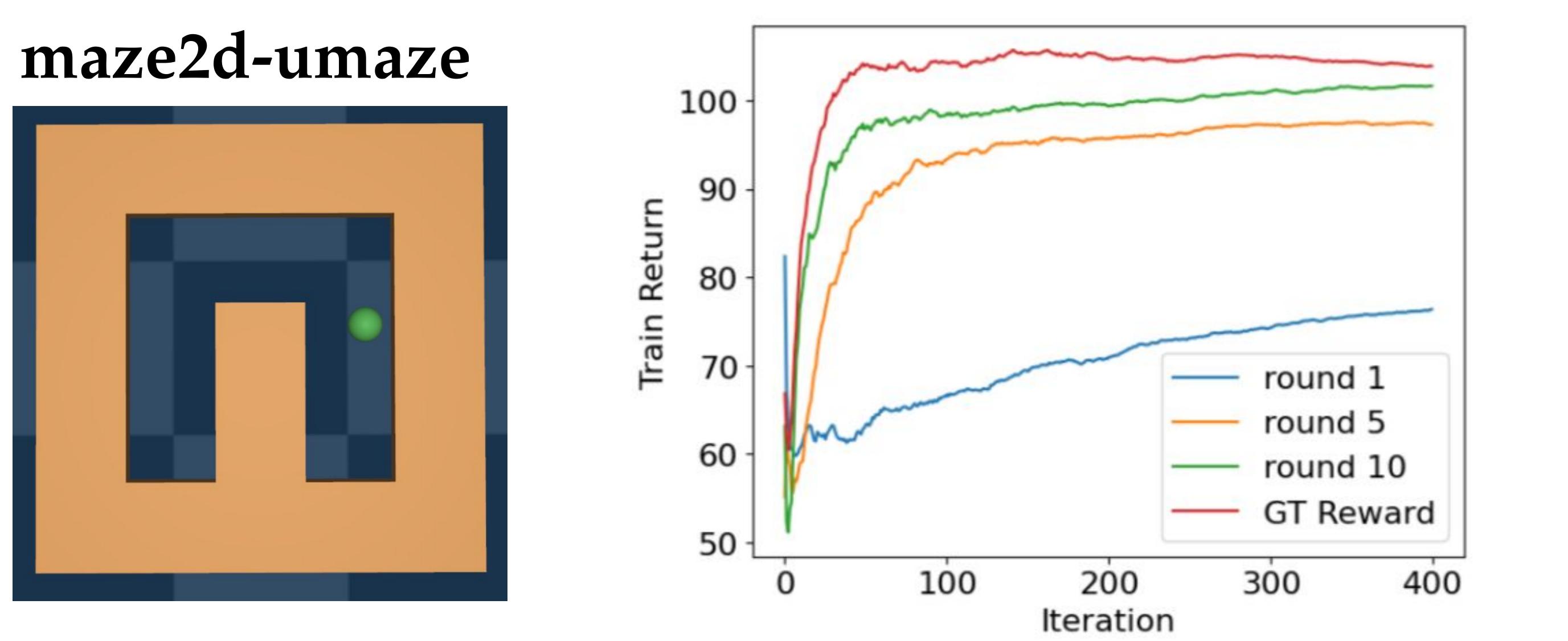
AWR (PENG ET AL., 2019)	QUERY AQUISITION METHOD									
	T-REX	ENSEMDIS	EnsemInfo	DROPDIS	DropInfo					
MAZE2D-UMAZE	78.2	93.5	89.2	88.0	61.3					
MAZE2D-MEDIUM	71.6	86.4	71.0	52.6	44.4					
HOPPER	69.0	77.5	72.8	87.6	90.6					
HALFCHEETAH	96.1	113.7	100.6	84.4	91.7					
FLOW-MERGE-RANDOM	110.1	89.0	92.1	86.2	84.2					
KITCHEN-COMPLETE	79.6	105.0	158.8	48.5	65.4					

We investigate two query acquisition functions: disagreement and information gain, and two methods for obtaining uncertainty estimates: *ensembles* and Bayesian dropout. We evaluated all four combinations including Ensemble Disagreement (EnsemDis), Ensemble Information Gain (EnsemInfo), Dropout Disagreement (DropDis), Dropout Information Gain (DropInfo) in addition to a fixed set of randomly chosen queries (**T-REX**). We find that Ensemble Disagreement performs well overall.

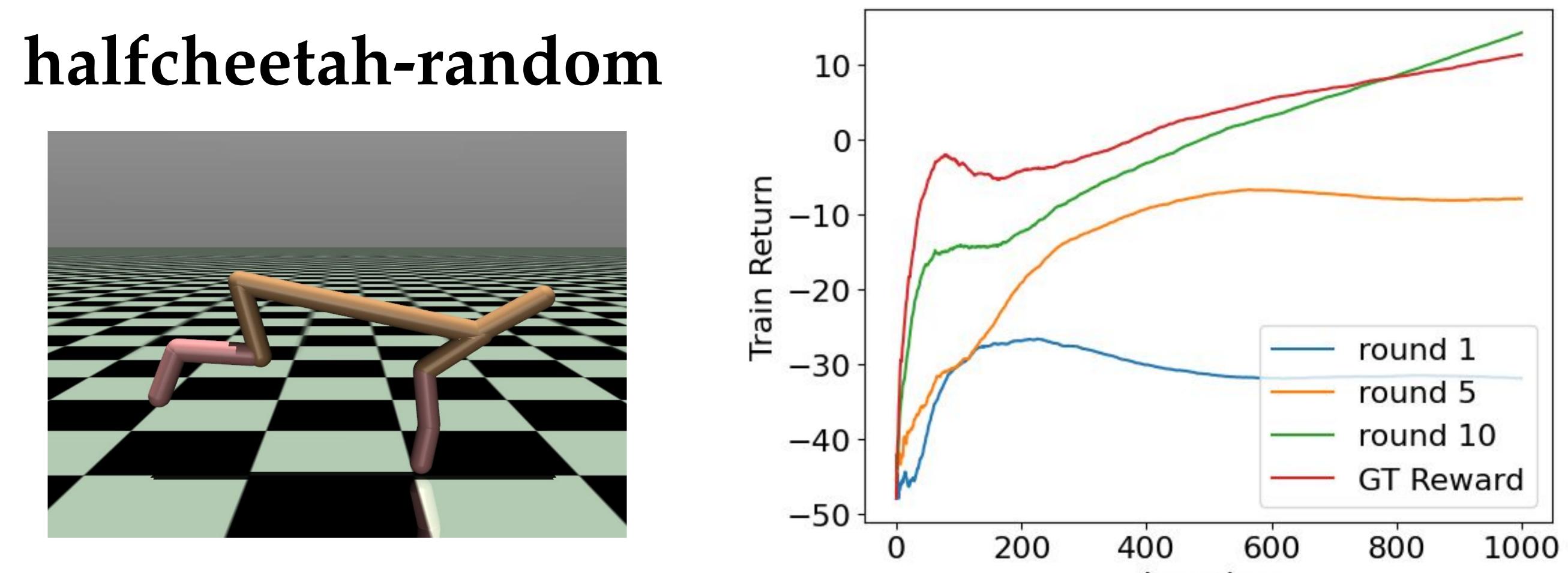
OPAL Framework

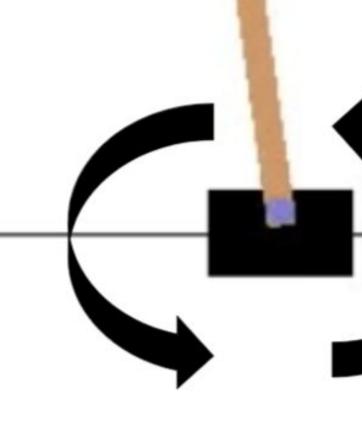
Offline Dataset

RL Policy



We only require 15 bits of information to get performance comparable with using **1 million** samples of the ground truth rewards!





Check out our website here for more results and videos

OPAL Only Needs Small Numbers of Active Queries

Customized Learned Behaviors

Orbit Constrained Navigation

Iteration

